首页/三牛注册/测速平台
首页/三牛注册/测速平台
当前日期时间
当前时间:
产品详情
 
当前位置
天九娱乐_天九注册【1号团队】
作者:管理员    发布于:2024-01-02 19:29    文字:【】【】【

  天九娱乐_天九注册【1号团队】仪器信息网平行预应力型压电致动器专题为您提供2024年最新平行预应力型压电致动器价格报价、厂家品牌的相关信息, 包括平行预应力型压电致动器参数、型号等,不管是国产,还是进口品牌的平行预应力型压电致动器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平行预应力型压电致动器相关的耗材配件、试剂标物,还有平行预应力型压电致动器相关的最新资讯、资料,以及平行预应力型压电致动器相关的解决方案。

  根据世界卫生组织的数据,全球约4.3亿人因耳蜗受损而遭受听力损失,改善听力主要靠人工耳蜗。然而,传统的人工耳蜗语音识别能力较低,而且刚性电极与软组织间的不匹配可能导致神经损伤和耳鸣等问题。随着物联网和人工智能的发展,柔性自供电人工耳蜗的研究引起了广泛关注。在国家自然科学基金委、科技部、中国科学院和北京市的大力支持下,化学研究所绿色印刷院重点实验室宋延林课题组近期在各向异性材料合成和图案化器件制备方面取得了系列进展,如二维MXene与纳米晶复合材料研究(J.Mater.Chem.A,2022,10,14674-14691 NanoRes.2022,DOI:10.1007/s1-x),直写高性能原子级厚二维半导体薄膜和器件(Adv.Mater.2022,DOI:10.1002/adma.202207392),制备基于交替堆叠微电极的湿度传感超级电容器(EnergyEnviron.Mater.2022,DOI:10.1002/eem2.12546)等。压电材料可以作为未来人工耳蜗的有利候选材料,然而,主流含铅压电材料与生物不相容,对环境不友好,其他压电材料的电输出功率由于声电转换性能低,不足以直接刺激听觉神经。因此,制造高性能无铅柔性压电声学传感器意义重大。最近,他们受人类耳蜗外耳毛细胞的启发,报道了一种基于准同型相边界的多组分无铅钙钛矿棒的直写微锥阵列策略,该策略一方面利用取向工程和在两个不同正交相(Amm2和Pmmm)之间形成的准同型相边界,显著提高应力对压电材料性能影响,实现压电响应增强;另一方面在压电薄膜表面引入微锥阵列,增加与声波的接触面积,增强对声波的吸收,从而制备高性能柔性压电声学传感器(FPAS)。该传感器显示出高灵敏度、宽频率响应的特点,覆盖常用的语音频率,同时具有角度灵敏度,可用于记录声音信号,并实现语音识别和人机交互。FPAS还具备防水和耐酸碱等特点,满足自然环境对可穿戴声学传感器的要求。研究成果近日发表于Matter期刊上(),论文第一作者是硕士生向钟元,通讯作者是宋延林研究员和李立宏副研究员。图1.微锥阵列柔性压电声敏器件应用演示图图2.声音数据采集、人机交互应用和FPAS的防水性能

  随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArchS140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3DprintedpiezoelectricBNNTsnanocompositeswithtunableinterfaceandmicroarchitecturesforself-poweredconformalsensors”为题发表在国际高水平期刊《NanoEnergy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140%(见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度;课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small13(23),1604245;NanoEnergy60,701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(structB-P和structC-P)的压电薄膜能进一步提高信号输出(见图3)。图3平面和微图案化压电薄膜的设计和仿线D打印拓扑结构及压电信号测试,表明F-BNNTs/树脂复合膜的最大输出电压记录为4.7V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4(a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4(a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。论文链接:官网:

  随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArchS140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3DprintedpiezoelectricBNNTsnanocompositeswithtunableinterfaceandmicroarchitecturesforself-poweredconformalsensors”为题发表在国际高水平期刊《NanoEnergy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140%(见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度;课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small13(23),1604245;NanoEnergy60,701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(structB-P和structC-P)的压电薄膜能进一步提高信号输出(见图3)。图3平面和微图案化压电薄膜的设计和仿线D打印拓扑结构及压电信号测试,表明F-BNNTs/树脂复合膜的最大输出电压记录为4.7V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4(a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4(a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。论文链接:官网:

  随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArchS140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3DprintedpiezoelectricBNNTsnanocompositeswithtunableinterfaceandmicroarchitecturesforself-poweredconformalsensors”为题发表在国际高水平期刊《NanoEnergy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140%(见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度;课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small13(23),1604245;NanoEnergy60,701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(structB-P和structC-P)的压电薄膜能进一步提高信号输出(见图3)。图3平面和微图案化压电薄膜的设计和仿线D打印拓扑结构及压电信号测试,表明F-BNNTs/树脂复合膜的最大输出电压记录为4.7V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4(a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4(a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。论文链接:

  近日,国家中低压电气质量监督检验中心(以下简称国家中低压电气检验中心)总承包签字仪式在京举行,标志着国家中低压电气检验中心正式启动建设步伐。国家中低压电气检验中心位于四川省成都市双流县煎茶镇,总投资3.65亿元,占地10公顷,建筑面积3万平方米,由成都市质检院筹建,中国节能环保集团公司总承包,双流西航港建设投资公司投资建设。“国家中低压电气检验中心的建设,将促进西部地区装备制造业的发展,促进中低压电气的产业升级和结构调整。”据成都市质监局有关负责人介绍,该中心预计今年年底动工,工程分两期完成,2011年建成低压部分,2012年建成中压部分,力争2012年底全部投入使用。

  原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1.压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2.PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。图1压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3.PFM的测量模式图2压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonancePFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonancePFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得PFM压电响应信号比常规FPM测量的响应信号幅值放大了Q倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。4.PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用VectorPFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线的材料特性曲线]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6Si掺杂HfO2样品的回字形写畴区域[3]5.注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在PFM测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1]HERMESIM,STOMPR.Stabilizingthepiezoresponseforaccurateandcrosstalk-freeferroelectricdomaincharacterizationviadualfrequencyresonancetracking,F,2020[C].[2]LVJINW.Ferroelectricityinuntwistedheterobilayersoftransitionmetaldichalcogenides[J].Science(NewYork,NY),2022,376:973-8.[3]MARTIND,MüLLERJ,SCHENKT,etal.FerroelectricityinSi-dopedHfO2revealed:abinarylead-freeferroelectric[J].AdvMater,2014,26(48):8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。

  近日,深圳市速普仪器有限公司在西安交通大学创新港校区顺利交付光电版薄膜应力测量仪FST2000。该项目系速普仪器今年继安徽某OLED显示屏公司和宁波大学两套已交付后的第三套FST2000,另外还有三套待交付及若干套即将执行采购。成功实现业界主流光电版薄膜应力仪的国产化替代。薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术(2000年代技术,曾获业界R&D100大奖),抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。做一个比喻,丘陵地貌,尽管整体平均地面是平整的,但是局部是起伏的。因此,第一种路线线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,第二种激光点阵技术路线具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。作为国内同类产品的唯一供货商,速普仪器创造性的提出同时兼容测试效率和细节精度的方案,即激光点阵Mapping面扫模式(适合分析局部应力分布)和L-D线扫模式(适合快速QC质检)。并采用具有自主知识产权(CN0.9)的新型光路设计(更简单可靠)。FST2000薄膜应力仪采用经典的激光曲率法,利用5×5激光点阵对样品表面进行扫描测量,自动获取样品表面曲率半径数值,并自动代入内置Stoney公式获取薄膜应力数值。FST2000薄膜应力测试范围:5MPa-5GPa;曲率半径/薄膜应力重复精度:<1%(曲率半径<20m),<3%(曲率半径<100m);扫描步长:Min.0.1mm;扫描数据点:Max.1万点;可视化2D/3D显示。另外,针对不平整表面样品,本仪器具有对减功能模式,即镀膜前后数据点阵根据坐标点逐点对减获得真实薄膜曲率半径和应力分布,通过数据处理校正样品原始表面不平整的影响。同时,本仪器还具有直观且简单的操作界面。本地化技术团队能够提供便捷的售后服务。深圳市速普仪器有限公司简介:

  2018年7月23日由天津大学精密仪器与光电子工程学院教授、博士生导师叶声华院士,残余应力专业委员会主任、副主任等9位专家组成的产品鉴定委员会,对丹东浩元仪器有限公司新研发的“DST-17型X射线应力测定仪”进行了评审。专家组一致认定该产品的性能达到国际领先水平,产品有着广阔的市场前景。丹东浩元仪器有限公司是集产品研发、生产、销售、服务于一体的X射线衍射仪、X射线应力仪专业生产企业,是X射线衍射仪国家标准制定单位,国家高新技术企业。企业拥有一支高素质、年轻化、专业化的研发团队和现代化企业管理队伍,全身心致力于X射线分析仪器研发工作。通过产学研合作,依托“国家重大科学仪器设备研发”专项,“高端多功能X射线衍射仪研发”项目技术研发的DST-17型X射线应力测定仪,为新材料研究及关键零部件的可靠性提供可靠检测手段,产品特点是大功率、高分辨、检测结果准确。该产品的投产、实现销售推广,极大提升民族科学仪器在国内外市场的竞争能力。

  SHK-H102金属线材扭转试验机该扭转试验机主要用于测定直径φ0.7-φ3mm金属线材在单向或者双向扭转中可以承受塑性变形的能力,试验过程中可以显示线材的表面缺陷。该试验机由电动加载,旋转传感器检测扭转圈数,液晶显示检测结果。满足标准:GB/T239-1999《金属线材扭转试验方法》、GB4909.4-1985《裸电线试验方法扭转试验》适用行业:主要适用于有关科研部门、各类大专院校和工矿企业的力学实验室用来测定材料的扭转性能;非常适合生产线材单位在线检测及使用线材单位的进货检验;广泛应用于钢厂高速线、预应力钢丝厂、质量监督、科研院所、公路交通、电线电缆等部门。技术参数:1、扭转直径范围:φ0.7-φ3mm2、夹头间距:100-300mm3、转速:60、90、120±10%4、单根钢丝断后,自动停止,并自动显示转圈,精确到0.1圈5、两夹头同轴度:<φ0.4mm6、移动导轨平行度:<0.2mm7、夹持方式:手动8、钳口硬度:HRC50-609、工作噪声:≤70db10、特点:有捻钢丝回捻后,可手动正反转调整到无捻状态,液晶屏显示圈数,精确到0.1圈。如圈数转过后,可以倒转,可以显示圈数,两夹头之间有标尺11、砝码允差±0.5%12、试验机工作噪声(dB)<7013、工作电压:AC380V±10%50Hz,1.1kW

  组合化学(combinatorialchemistry)是近十几年来刚刚兴起的一门新学科。经过短短的十余年特别是近六七年的发展,组合化学已渗透到药物、有机、材料、分析等化学的诸多领域,随着自动化水平的提高,组合化学已成为目前化学领域最活跃的领域之一。组合化学在有机领域最引人注目的成就,是对传统药物化学合成的冲击。药物的开发是一个耗时耗费的过程,药物的研制历程之所以耗时耗费,很重要的原因是:先导化合物的发现与优化速度缓慢。组合化学能够大大加快化合物库的合成及筛选速度,从而大大加快了新药的研制速度,经过十几年的发展,组合化学方法已成为新药研制的必由之路,它的出现被誉为近年来药物合成领域的最显著的进步之一。组合化学库的合成方法主要为:混合-裂分法、平行合成法、混合试剂合成法。平行化学合成反应仪,就是专门为组合化学平行合成法而专门设计的,会给科研工作者的实验工作带来极大的便利。1、24个样品管可在相同条件下进行合成反应、回流萃取反应、惰性气体条件反应、在位蒸馏浓缩反应。2、反应温度条件为从-10℃----+150℃任意设定,控制精度为± 1℃。3、程序控温模式:■加热恒温控制。■12段程序加热定时控制。■12段程序恒温定时控制。4、反应平台回旋震动功能:0---500转/分回旋震动,触摸按键随意调整转速。5、独立密封瓶盖设计,不会产生交叉污染,在密封状态下可向试管内添加反应试剂。screen.width-300)this.width=screen.width-300

  说起威思曼公司,2004年,高永明看到中国高压电源产品依然受制于国外,毅然从上市公司辞职,创办了西安威思曼高压电源有限公司。西安威思曼高压电源有限公司经理高永明威思曼公司2007年注册成立。“当时因为我上班的上市公司也用高压电源,每次采购的价格都不一样,明摆着是中国做不了,你只能任人宰割。当时我就决定我们自己下大力气去开发高压电源。”而选择做分析仪器的电源,也是由于2007年左右正是RoSH指令实施后采购XRF的高峰,所以,威思曼公司的第一个产品就是XRF高压电源,公司前十年也一直致力于耕耘分析仪器领域。镉大米检测仪的电源X射线类分析仪器的电源产品,除了RoSH检测仪,威思曼还提供测金仪、测厚仪、镉大米检测仪,以及XRD等的电源。“镉大米检测仪的电源我们是全球第一家自主研发的生产商,是与钢研纳克一起合作推出,并得到了国家粮食局系统的认可。”高永明说到。“目前X射线类分析仪器的高压电源产品仍是威思曼主要生产的一类产品。”高永明说到,“但是,这类产品的利润已经非常薄了。”为此,近年来高永明在不断拓展新的产品以及新的应用领域。场发射扫描电镜电源研制成功,解决了一项“卡脖子”的技术2012年底,威思曼公司拿到了咸阳市科技局一个5万元的资助项目。“我们自己光资金投入就有250万左右。历经六年的时间,2017年电子显微镜的高压电源产品才正式问世。”据了解,目前世界上只有三家厂商能够生产该类产品,而国内能做的就只有威思曼高压电源一家公司。“这款电源的设计初衷是给台湾一家公司的场发射扫描电镜产品定制开发。”这家台湾公司的场发射扫描电镜主要用于半导体行业,客户只有三星和英特尔这两家做晶圆的公司。虽然市场销量非常少,但一台仪器都可以卖出一个多亿人民币的价格来。“我们的高压电源就是配套在这个电子显微镜里头的,而该电子显微镜产品2017年已经开始整机销售了。目前,这个高压电源在世界上是属于电子显微镜电源中比较顶尖的。”高永明自豪地说到。“如今,国内生产电子显微镜的公司用到电源就会找到我们。”不过高永明也遗憾地说,这种电镜电源的市场量很少。为此,我们好奇地问到,威思曼公司自己投入了那么多资金、花了那么长的时间,研制出来的却是一个市场量很小的产品。当时,高永明是怎么想的呢?场发射扫描电镜电源“其实做这个产品,我是任性了一把,也真的是因为一种‘情怀’的存在。”高永明讲述到,当年美国总统尼克松访访华的时候送给周总理一个礼物,就是电子显微镜技术。如今,纳米材料的研究与加工等在国家发展中发挥着重要作用。虽然,电镜作为一种纳米材料表征技术的市场量并不很大,但是很多实验室都会用到,如果国外仪器公司不卖给我们,就是个“卡脖子”的问题。“接了这个活,也是因为许多老科学家对我们的鼓励,‘这个事咱们国内一定要做,咱们中国一定要做出尖端的、世界一流的电子显微镜,所有的配套的东西一定要在中国解决。’”2017重大专项取得重大突破,将大幅提升整个高压电源产品性能场发射扫描电镜电源产品的研制成功,标志着威思曼公司掌握了尖端技术,在这个行业里达到了一定“高度”。也因此,威思曼公司顺利获得了2017年科技部“重大科学仪器设备开发”重点专项——“X射线高压电源”项目。该项目主要为了解决小体积、大功率、高电压电源的国产化问题。2017年12月18号该项目正式启动。据高永明介绍,重大专项项目要求非常具体,该项目要求实现的指标是:体积132*480*480mm、功率5000瓦、电压250千伏、逆变频率240K赫兹。“这四个条件同时实现是很难的,目前全球范围内都没有该级别的产品。”高永明说到:“我们当时接下这个项目也是有点忐忑。在高压电源领域,没有太多可参考的东西,完全要我们自主研制。”不过,仅用了不到半年的时间,该项目已经取得了重大突破。接下来,高永明和他的同事们将不断“抠”细节、做出工程样机来。重大专专项产业化的要求——每年2000万产值,高总认为,有难度,但是非常有信心完成。“完全按照重大专项这些指标制作的产品并没有多大的市场,但是,使用重大专项的某几项技术细分成不同的产品就很有用了,这也是重大专项的意义。”高永明说到,“未来,我们要把这项技术扩展到所有的产品中去。这可能对整个高压电源领域是比较大的一个震动,对整个高压电源产品的性能将有大幅度的提升。”2018年威思曼又承担了国家科技项目“增材制造”项目——金属3D打印机的子项目,仍是核心部件——高压电源,也是中国首款。后记威思曼的很多产品开发是来自于合作伙伴的需求,另外一个典型的例子是威思曼与广州禾信合作开发的质谱仪专用高压电源模块,电源的噪声、稳定性等性能的高低决定着质谱仪的分辨率等指标。广州禾信的董事长周振当时说到,做中国人的质谱,也应该做一个中国人的高压电源公司。大约5年前的时候,广州禾信实现了数字离子阱质谱仪的原理样机,但是样机的脉冲电源体积太大,比预期的整机体积都要大。为了实现小型化,当时就找到了威思曼。而威思曼最后做出的电源只有烟盒大小,使得广州禾信的数字离子阱质谱仪才可以做的非常小。周振董事长也比较受触动,开始与威思曼形成了战略合作关系。谈到公司的未来发展规划,高永明表示,“我们一定要做中国高压电源领先公司,全球领先的高压电源制造商。”中长期的规划是拓展医疗、安检等应用领域,实现产值规模达到7000万。同时,将公司投入1个多亿计划建设的“西安威思曼科技园”建起来。长期的规划是通过十年左右时间,实现企业上市。

  6月20日,在坐落于廊坊市的中国核电工程有限公司研发基地中,由中国核电工程有限公司和哈工大范峰教授团队联合开展的严重事故下“华龙一号”安全壳结构性能试验,圆满完成了热压耦合工况全部试验任务。该试验为世界上最大尺寸安全壳模型高温-高压耦合加载工况下的结构性能试验,填补了国际上安全壳结构在严重事故导致的高温-高压-高湿复杂环境作用下的试验空白。试验模型以“华龙一号”预应力混凝土安全壳为原型,按照1:3.2的缩尺比进行设计,是目前世界上最大尺寸的安全壳试验模型。试验模拟严重事故下安全壳结构极限性能,试验工况复杂,难度极大,试验前期准备工作历时3年。试验在国内外首次实现预应力混凝土安全壳模型高温-高压耦合加载工况,可以真实地模拟安全壳在严重事故下的高温-高压-高湿复杂环境及其对结构的耦合作用。安全利用核能是核电发展的前提和最高原则。核安全壳在服役期内面临多种极端作用的严峻威胁,但世界范围内有关安全壳结构严重事故下的结构性能研究试验手段滞后。该试验解决了国内外已有研究成果中因为模型尺寸小、无法反映原型结构失效路径和破坏模式的关键问题,高温-高压耦合加载工况能够更真实地反映安全壳在严重事故下的力学行为和失效机理,为“华龙一号”安全壳原型结构在严重事故下力学性能和薄弱环节的安全评估提供了重要科学依据和技术支撑。试验团队建立了考虑预应力影响、非线性影响、温度场影响、热压耦合等多因素的安全壳试验全过程仿真模型,进行了系统的试验设计,同时考虑了安全壳的大容积给高压和高温协同加载带来的技术挑战、高温-高压-高湿环境下的实时监测难度、高温-高压耦合加载下安全可靠的防护设置,进行了系统、精细、完备的安全壳试验预分析和实时同步仿真,为圆满完成试验奠定了坚实的基础。试验成功按照预设的温度-压力加载曲线进行加载,验证了安全壳高温、高压长时间持荷下的结构性能。哈工大空间结构研究中心在沈世钊院士、范峰教授的带领下,立足于国家重点工程和重大需求,积极与中国核电工程有限公司合作,在先进核电厂安全壳结构抗爆抗冲击性能、新型结构体系、精细化施工控制、极端环境的复杂试验方法等领域开展系统研究,取得了一系列突破性进展,为严重事故下安全壳系统性能全面提升、“华龙一号”后续新一代核电技术研发和在役核电厂安全运行提供了有力支撑。哈工大试验团队由范峰教授带领,支旭东教授、钱宏亮教授、严佳川教授、王化杰副教授、张荣博士、张志伟博士、博士生杨青屿参与相关研究工作,威海校区新能源学院谭建宇教授、郝晓文副教授、于秋红副教授、王方舟副教授参与加载系统的相关研究工作。试验现场穹顶吊装技术问题研讨

  近日,国网河北省电力有限公司营销服务中心投用宽量程低压电流互感器人工检定装置,完成了90只互感器设备的检定工作,标志着国网河北电力营销服务中心具备宽量程低压电流互感器检定能力。分布式光伏发电客户在夏、冬两季容易受自身负荷波动影响,出现一次电流超过常规低压互感器量程的情况。宽量程低压电流互感器能够保证一次电流在额定电流的0.1%~200%时的准确计量,提高分布式光伏发电客户上网电量计量的精准性。2022年以来,国网河北电力营销服务中心从优化标准设备配置、提高电流源输出能力方面开展宽量程低压电流互感器检定技术研究。该中心创新融合标准直流互感器、半波发生装置和大容量电流源的测量功能,解决高线性和小微差检定技术难点,形成多品类低压电流互感器检定装置兼容性设计方案,实现传统低压电流互感器、抗直流偏磁低压电流互感器与宽量程低压电流互感器兼容检定,满足宽量程低压电流互感器检定需求。国网河北电力营销服务中心还贯通了宽量程低压电流互感器人工检定装置与省级计量生产调度平台系统数据接口贯通,实现任务数据、结论数据系统间自动交互。目前,该中心完成了8种变比的宽量程低压电流互感器的检定测试,检定装置运行平稳,各项指标满足规程要求。低压电流互感器是一种可以把高交流电流转化为容易控制的低电流的设备,具有性能优良,精度稳定的特点。低压双绕组电流互感器,用于多回路低压智能配电中电流测量,可远传,或遥测装置配套使用,是低压智能配电低成本方案理想的智能化配电元件。低压双绕组电流互感器作为低压配电系统监控电流的采集元件,具有两个绕组,其一(1S1、1S2)用于电流表指示,额定二次电流为AC5A或AC1A,其二(2S1、2S2)用于远传遥测,可与远端监控现场信号、工业设备的测控装置ARTU-M32遥测单元配套使用,额定二次电流为AC0-20mA;亦可用于电动机保护回路中使用,但由于电流保护回路过载电流为5-8倍,所以确保低压双绕组电流互感器的线倍时,能保证双绕组电流互感器的误差在0.2-0.5%。

  浙江省计量科学研究院成立于1960年,是浙江省人民政府计量行政部门依法设置并经国家总局授权的省级法定计量检定机构、浙江省市场监督管理局所属公益二类事业单位、浙江省科技厅重点扶植科研院所之一。目前拥有实验室面积3万多平方米,设备资产超过3亿元。下设电能计量研究所、流量计量研究所、热工计量研究所、力学计量研究所、长度与精密测量研究所、信息与电磁计量研究所、交通与声学计量研究所、医学与电离辐射计量研究所、生物与化学计量研究所。可对长度、力学、热工、电磁、无线电、声学、时间频率、化学、光学、电离辐射等领域计量器具及参数进行检定、校准和全性能检测。为进一步展开工作,浙江省计量科学研究院于近日公布了一批仪器设备采购意向,采购品目涉及500kV高压计量装置、1800kV冲击耐压试验装置、淋雨试验装置、疲劳试验机、显微CT、多分量力传感器校准装置、环境试验箱等,预算金额相加达3485万元,预计采购时间为2022年7月。浙江省计量科学研究院2022年7月仪器设备采购意向序号项目名称预算金额需求概况1220kV电力用测量互感器国家型式评价实验室建设1900万元包括500kV工频串联谐振装置、局部放电测量系统、电压互感器综合试验装置、500kV高压计量装置、1800kV冲击耐压试验装置、淋雨试验装置、耐压测试集成装置、短路承受能力试验装置、电流互感器综合试验装置、组合互感器检定装置、绝缘油性能综合试验装置、互感器密封性能及测量装置、互感器压力测量装置、气体露点仪、沙尘试验箱、弹簧冲击锤、宽频功率标准测量系统、高压安全综合测试系统、高压电量多参数量传标准、宽频互感器检定装置、宽量程互感器检定装置、直流互感器误差检定装置等。2疲劳试验机250万元准确度等级1级疲劳试验机1套,用于驮预应力钢材的检测。3显微CT550万元1.微焦点尺寸:≤2μm;2.像素尺寸:≤75μm;3.像素数:≥2048*2048。满足JJF1596-2016要求。4多分量力传感器校准装置405万元建立多分量力传感器校准装置,xyz向力准确度等级0.3级,x/y/z向力矩量程(50-5000)Nm,准确度等级0.3级。5环境试验箱及实验室改造100万元用于对气体分析仪类仪器计量性能进行测试时提供额定温度工作条件,由于在气体分析仪的测试过程会排放出有毒有害或易燃易爆气体,需购置具有通风功能的环境试验箱和对实验室进行改造。6体积管油流量标准装置280万元主要用于对油库贸易结算用容积式流量计、科里奥利质量流量计的检定,优先采用体积管作为主标准器。

  2021年11月8日,工信部公示了拟认定的第六批制造业单项冠军和拟通过复核的第三批制造业单项冠军名单。共有118家企业荣膺“第六批制造业单项冠军示范企业”称号,141个产品摘得“第六批制造业单项冠军产品”的桂冠。其中武汉高德红外股份有限公司(主营红外探测系统)、烟台艾睿光电科技有限公司(主营非制冷红外热成像产品)、华海清科股份有限公司(主营化学机械抛光设备)等仪器企业跻身本批“制造业单项冠军示范企业”名单。此外,北京六合伟业科技股份有限公司的测斜仪、深圳华大智造科技股份有限公司的高通量基因测序仪荣获本批“单项冠军产品”称号。本名单旨在促进我国制造业的创新能力和产品质量的提升,选拔细分产品领域的冠军企业,助力大国制造的理念腾飞,提升中国的国际竞争力。参选企业由企业自行申报和各地工信主管部门、央器特别推荐几部分构成。列入光荣榜的企业和产品都经过了相关行业协会限定性条件论证和专家组论证。拟认定的第六批制造业单项冠军名单一、单项冠军示范企业序号示范企业名称主营产品1江苏南大光电材料股份有限公司电子半导体材料(MO源和离子注入气体)2山东华菱电子股份有限公司热敏打印头3云南临沧鑫圆锗业股份有限公司先进金属锗材料4厦门汉印电子技术有限公司热敏打印机5通威太阳能(合肥)有限公司太阳能电池6格科微电子(上海)有限公司CMOS图像传感器7杭州中科微电子有限公司北斗导航芯片及模块8重庆美利信科技股份有限公司通信结构件9江西兴泰科技有限公司电子纸10浙江洁美电子科技股份有限公司薄型封装纸带11深圳市金溢科技股份有限公司ETC车载单元12智洋创新科技股份有限公司电力智能运维分析管理系统13华海智汇技术有限公司海底通信系统中继设备14深圳创维数字技术有限公司超高清数字电视接收机15江西立讯智造有限公司真无线立体声(TWS)蓝牙耳机16宁波微科光电股份有限公司红外线武汉高德红外股份有限公司红外探测系统18营口金辰机械股份有限公司太阳能电池组件自动化生产线深圳传音控股股份有限公司人工智能深肤色影像移动终端20锦浪科技股份有限公司户用光伏逆变器21烟台艾睿光电科技有限公司非制冷红外热成像产品22中广核达胜加速器技术有限公司工业辐照用电子加速器23新华三技术有限公司企业网无线华海清科股份有限公司化学机械抛光设备25江苏亨通海洋光网系统有限公司海底光缆26江苏海鸥冷却塔股份有限公司机力通风冷却塔27力博重工科技股份有限公司长距离大运力复杂线亿嘉和科技股份有限公司电力智能巡检机器人29黑旋风锯业股份有限公司金刚石锯片基体30大连华锐重工焦炉车辆设备有限公司炼焦机械设备31通化建新科技有限公司镍铁冶炼成套设备及其生产线北人智能装备科技有限公司卷筒纸平版书刊印刷机33山东普利森集团有限公司高效智能深孔机床34恒锋工具股份有限公司复杂刀具35合肥泰禾智能科技集团股份有限公司色选机36广州高澜节能技术股份有限公司电力电子装置用纯水冷却设备37合肥恒大江海泵业股份有限公司潜水电泵38杭州科百特过滤器材有限公司高性能微孔膜滤芯39山东汇丰铸造科技股份有限公司工程机械起重机用铸造卷筒40浙江正泰电器股份有限公司低压智能断路器41通号(西安)轨道交通工业集团有限公司轨道交通信号基础装备42山西中设华晋铸造有限公司履带板及大型矿山设备用铸件43卡斯柯信号有限公司列车运行控制系统44广东富华重工制造有限公司挂车车轴45中国铁建高新装备股份有限公司铁路大型养护装备46广州市浩洋电子股份有限公司影视舞台灯47江苏威尔曼科技有限公司电梯感应式一体化人机交互装备48宁波培源股份有限公司减震器活塞杆49宁波杜亚机电技术有限公司管状电机50宁波东力传动设备有限公司冶金用高功率密度减速器51昆明云内动力股份有限公司四缸柴油发动机52大连瑞谷科技有限公司精密轴承保持架53日照兴业汽车配件股份有限公司商用车车架54山东华盛农业药械有限责任公司割灌机55安阳凯地电磁技术有限公司工业液压阀用电磁铁56雪龙集团股份有限公司商用车发动机冷却风扇总成57广州瑞立科密汽车电子股份有限公司商用车气制动防抱死制动系统(ABS)58宁波信泰机械有限公司汽车车身外饰条59山东金帝精密机械科技股份有限公司轴承保持架60江苏精研科技股份有限公司金属粉末注射成形零部件61利欧集团股份有限公司微小型动力式泵62泰尔重工股份有限公司万向联轴器63青岛征和工业股份有限公司滚子链64北京天宜上佳高新材料股份有限公司动车组粉末冶金闸片65浙江万向精工有限公司乘用汽车轮毂轴承单元66常州星宇车灯股份有限公司汽车车灯67江苏丰尚智能科技有限公司饲料加工成套装备68青岛天能重工股份有限公司兆瓦级风力发电机组塔架69镇江大力液压马达股份有限公司摆线宁波达尔机械科技有限公司高精密微型深沟球轴承71中际联合(北京)科技股份有限公司风电专用高空安全作业设备72宁波色母粒股份有限公司彩色塑料色母粒73东营国安化工有限公司再生润滑油基础油74广东邦普循环科技有限公司循环再造动力锂电池正极材料镍钴锰酸锂75河南银金达新材料股份有限公司功能性聚酯热收缩(PETG)薄膜76浙江龙盛集团股份有限公司染料及中间体77湖北仙粼化工有限公司丁酮肟、乙醇胺78恒力石化(大连)有限公司精对苯二甲酸(PTA)79江西蓝星星火有机硅有限公司硅氧烷类产品80成都硅宝科技股份有限公司有机硅密封胶81杭州格林达电子材料股份有限公司TMAH显影液82龙口联合化学股份有限公司大分子颜料单体着色剂83洛阳涧光特种装备股份有限公司石油焦密闭除焦系统84浙江浦江缆索有限公司桥梁缆索85山东鲁银新材料科技有限公司高性能钢铁粉末86青岛云路先进材料技术股份有限公司铁基非晶合金带材87首钢智新迁安电磁材料有限公司电工钢88江西悦安新材料股份有限公司羰基铁粉89宁波长振铜业有限公司高精密铜合金端面型材90山西亮宇炭素有限公司铝用阴极炭块91新疆众和股份有限公司铝电子材料92山东天岳先进科技股份有限公司半绝缘碳化硅衬底93河南天马新材料股份有限公司流延成型电子陶瓷基板用特种氧化铝94湖北平安电工科技股份公司云母制品95山东鲁阳节能材料股份有限公司陶瓷纤维制品96江苏联瑞新材料股份有限公司电子级二氧化硅微粉97泰山玻璃纤维有限公司玻璃纤维及制品98淄博工陶新材料集团有限公司陶瓷溢流砖及配套材料99河南四方达超硬材料股份有限公司聚晶复合片100宁波大发化纤有限公司再生涤纶短纤维101华熙生物科技股份有限公司透明质酸102青岛海尔特种电冰柜有限公司家用卧式冷冻箱103宁波利时日用品有限公司环保可循环高温共聚聚酯104泰山恒信有限公司食品酿造自动化勾调控制系统装备105广东美的厨房电器制造有限公司微波炉106舒普智能技术股份有限公司智能特种工业缝纫机107深圳市科达利实业股份有限公司锂离子电池精密结构件108山东隆科特酶制剂有限公司食品用糖化酶109厦门长塑实业有限公司双向拉伸尼龙薄膜110保龄宝生物股份有限公司低聚异麦芽糖111江苏双星彩塑新材料股份有限公司聚酯塑料薄膜112山东同大海岛新材料股份有限公司超细纤维合成革113上海重塑能源科技有限公司商用车氢燃料电池系统114深圳市德方纳米科技股份有限公司纳米磷酸铁锂电池正极材料115合肥乐凯科技产业有限公司光学膜材料116河南瑞贝卡发制品股份有限公司高端发用功能型纤维材料117健帆生物科技集团股份有限公司一次性使用血液灌流器118青岛海尔生物医疗股份有限公司生物医疗低温存储设备二、单项冠军产品序号单项冠军产品名称生产企业1显示器模组苏州清越光电科技股份有限公司2应力转移型特强钢芯软铝型线单电感三输出AMOLED显示屏电源芯片圣邦微电子(北京)股份有限公司4高性能刚性覆铜板广东生益科技股份有限公司5特种连接器中航光电科技股份有限公司65G通信基站用多收多发印制电路板深南电路股份有限公司7多层陶瓷电容器成都宏科电子科技有限公司85G基站小型化金属滤波器深圳国人科技股份有限公司9基站滤波器大富科技(安徽)股份有限公司10电脑类聚合物锂离子电池珠海冠宇电池股份有限公司11PCB(印制电路板)油墨深圳市容大感光科技股份有限公司12显示用液晶材料石家庄诚志永华显示材料有限公司13射频微波MLCC大连达利凯普科技股份公司14NTC热敏电阻器孝感华工高理电子有限公司15片式电阻器广东风华高新科技股份有限公司16手机电磁屏蔽件深圳市长盈精密技术股份有限公司17OLED有机空穴传输材料(Redprime)陕西莱特光电材料股份有限公司18卫星应用技术设备航天恒星科技有限公司19VR全景相机影石创新科技股份有限公司20交互智能平板广州视睿电子科技有限公司21手机镜头浙江舜宇光学有限公司22减速永磁式步进电动机江苏雷利电机股份有限公司23路由器普联技术有限公司24大功率集散式光伏逆变器成套系统上能电气股份有限公司2555英寸液晶面板TCL华星光电技术有限公司26北斗高精度卫星导航接收机广州南方卫星导航仪器有限公司2710kV高压电子式电能表烟台东方威思顿电气有限公司28高压电源测试系统艾德克斯电子(南京)有限公司29塑机控制系统宁波弘讯科技股份有限公司30数字卫星接收机泉州天地星电子有限公司31楼宇对讲产品厦门狄耐克智能科技股份有限公司32超高清监控镜头福建福光股份有限公司33齿轮减速机江苏国茂减速机股份有限公司34轴流式调节阀博思特能源装备(天津)股份有限公司35折弯机江苏亚威机床股份有限公司36连续重整加热炉辐射集合管辽阳石化机械设计制造有限公司37电主轴广州市昊志机电股份有限公司38智能矿用架空乘人装置湘潭市恒欣实业有限公司39测斜仪北京六合伟业科技股份有限公司40智能水表宁波水表(集团)股份有限公司41煤矿井下定向钻进装备中煤科工集团西安研究院有限公司42工业流程能量回收装置西安陕鼓动力股份有限公司43磁选设备山东华特磁电科技股份有限公司44旋片真空泵浙江飞越机电有限公司45机房空调维谛技术有限公司46防爆柴油机无轨胶轮车山西天地煤机装备有限公司47橡胶冷喂料挤出机中国化学工业桂林工程有限公司48悬臂梁施工装备山东博远重工有限公司49金刚石工具用预合金粉河南黄河旋风股份有限公司50煤矿井下用防爆车常州科研试制中心有限公司51全自动卷筒商标印刷机浙江炜冈科技股份有限公司52地质岩心钻探钻具金石钻探(唐山)股份有限公司53刮板输送成套设备中煤张家口煤矿机械有限责任公司54烧结成套设备湖南中冶长天重工科技有限公司55冲压焊接多级离心泵南方泵业股份有限公司56列车运行记录装置(LKJ)湖南中车时代通信信号有限公司57钩缓装置青岛思锐科技有限公司58重卡精密转向机活塞金马工业集团股份有限公司59电力机车中车株洲电力机车有限公司60辊压机成都利君实业股份有限公司61隔离开关接地开关类产品湖南长高高压开关有限公司62城际动车组中车青岛四方机车车辆股份有限公司63轨道交通车辆智能检修重大成套装备北京新联铁集团股份有限公司64城市轨道交通站台安全门方大智创科技有限公司65高速铁路牵引供电综合自动化系统天津凯发电气股份有限公司66中重型商用车前轴湖北三环车桥有限公司67铸造砂型3D打印设备共享智能装备有限公司68新能源汽车驱动系统压铸总成浙江华朔科技股份有限公司69风力发电用电缆远东电缆有限公司70交流电力机车中车大连机车车辆有限公司71电气化铁路接触网产品中铁高铁电气装备股份有限公司72吹瓶模具广东星联精密机械有限公司73110kV及以上高压超高压交联聚乙烯绝缘电力电缆青岛汉缆股份有限公司74混凝土泵车中联重科股份有限公司75履带起重机浙江三一装备有限公司76换向器深圳市凯中精密技术股份有限公司77卡车用轻型柴油发动机北京福田康明斯发动机有限公司78叉车门架滚动轴承江苏万达特种轴承有限公司794MZ型自走式棉花收获机新疆钵施然智能农机股份有限公司80工商用开启式螺杆制冷机组及冷冻系统冰山冷热科技股份有限公司81全冷式超大型液化石油气运输船(VLGC)江南造船(集团)有限责任公司82滚装船招商局金陵船舶(南京)有限公司83海上浮式生产储油装置(FPSO)上海外高桥造船有限公司84超大型原油船(VLCC)大连船舶重工集团有限公司85核应急柴油发电机组(PC2-6B)陕西柴油机重工有限公司86环保型纺织品用硅系阻燃材料山东龙港硅业科技有限公司87碳基复合材料热场部件湖南金博碳素股份有限公司88防老剂TMQ科迈化工股份有限公司89无水氟化氢贵州瓮福蓝天氟化工股份有限公司90锂离子电池电解液广州天赐高新材料股份有限公司91三聚磷酸钠湖北兴发化工集团股份有限公司92高端片状氢氧化钾华融化学股份有限公司93纳米二氧化硅(硅橡胶专用)福建远翔新材料股份有限公司94电容器化学品深圳新宙邦科技股份有限公司95五硫化二磷辽阳瑞兴化工有限公司96聚丁二酸丁二醇酯新疆蓝山屯河聚酯有限公司97赛克(三异氰尿酸酯)济宁键邦化工有限公司98碳纳米管导电浆料江苏天奈科技股份有限公司99六甲基二硅氮烷新亚强硅化学股份有限公司100钛纳米高分子合金防腐涂料江苏金陵特种涂料有限公司101L-酪氨酸山东阳成生物科技有限公司102全钢子午线轮胎成型机天津赛象科技股份有限公司103水煤浆水冷壁废锅气化炉(晋华炉)山西阳煤化工机械(集团)有限公司104新材料抗氧化添加剂江苏迈达新材料股份有限公司105缠绕管式换热器镇海石化建安工程有限公司106熔融钢渣高效罐式有压热闷处理技术与装备中冶节能环保有限责任公司107预应力螺旋肋钢丝天津银龙预应力材料股份有限公司108耐高温抗腐蚀Fe3Al金属间化合物粉末滤芯安泰环境工程技术有限公司109钒铁攀钢集团钒钛资源股份有限公司110超纯铁素体不锈钢山西太钢不锈钢股份有限公司111仲钨酸铵厦门钨业股份有限公司112四氧化三钴浙江华友钴业股份有限公司113先进铜基金属粉体材料有研粉末新材料股份有限公司114航空航天用7xxx系铝合金预拉伸板东北轻合金有限责任公司115高精铝锂合金材西南铝业(集团)有限责任公司116高性能玻璃纤维短切原丝毡江苏长海复合材料股份有限公司117人造单晶金刚石微粉柘城惠丰钻石科技股份有限公司11825K大丝束碳纤维浙江宝旌炭材料有限公司119空心瓷绝缘子醴陵华鑫电瓷科技股份有限公司120玻璃纤维覆膜滤料南京玻璃纤维研究设计院有限公司121生态陶板福建华泰集团股份有限公司122风电叶片用碳纤维拉挤板江苏澳盛复合材料科技有限公司123陶瓷滤膜及成套装备江苏久吾高科技股份有限公司124鞋材用非织造布晋江市港益纤维制品有限公司125纤维类鞋型织物信泰(福建)科技有限公司126高支纬编细针距羊毛产品上海嘉麟杰纺织科技有限公司127超高分子量聚乙烯纤维江苏九九久科技有限公司128棉纺并条机湖北天门纺织机械股份有限公司129清梳联合机青岛宏大纺织机械有限责任公司130PETG电池标签江苏景宏新材料科技有限公司131锂离子电池干法隔膜深圳市星源材质科技股份有限公司132太阳能电池背板苏州赛伍应用技术股份有限公司133钛酸锂电池银隆新能源股份有限公司134锂离子电池隔离膜上海恩捷新材料科技有限公司135涂布白面牛卡纸山东世纪阳光纸业集团有限公司136高效空气过滤纸重庆再升科技股份有限公司137Castor分支型主动脉覆膜支架及输送系统上海微创心脉医疗科技(集团)股份有限公司138脑起搏器系列产品北京品驰医疗设备有限公司139高通量基因测序仪深圳华大智造科技股份有限公司140母亲胎儿监护系统深圳市理邦精密仪器股份有限公司141空心纤维透析器山东威高血液净化制品股份有限公司附件:拟通过复核的第三批制造业单项冠军名单.pdf

  R/S应力/应变控制流变仪主要有RS-CPS(锥板),RS-CC(同心圆筒),RS-SST(软固体测试流变仪)oR/S流变仪既能进行控制应力的测量,也能进行控制应率的测量o扭矩范围很宽:0.05-50mNm.剪切速率:0.01-1000RPMo能够测量从1到900万cPs的粘度范围o转子的安装非常简单、快速R/S-CPS锥/板流变仪1.操作模式包括:1.控制剪切应率(RPM)2.控制剪切应力(扭矩)3.单机操作(不需电脑)4.全电脑控制2.测试方法包括:剪切应率回环测试;剪切应力斜坡测试;单点或多点粘度测量;温度斜坡测试;直观的QC/QA检验。3.可以测出以下特性:假塑性(剪切变稀)行为触变性(时间相关性)温度影响屈服点4.温度控制方式:循环水浴(温度范围取决于所选水浴液体,从-20oC到250oC)Peltier控制器(0到135oC)Electronic控制器(50到250oC)请联系:BROOKFIELD上海办事处上海市海宁路350号联合大厦2211室电线

  仪器信息网讯2018年10月31日,第九届慕尼黑上海分析生化展(analyticaChina2018)在上海新国际博览中心盛大召开。作为“创新100”项目公益性活动之一,咸阳威思曼高压电源有限公司(以下简称:威思曼)销售部长白婷与会期间接受了仪器信息网的视频采访。受中美贸易战影响,很多原来使用国外的高压电源的客户,都纷纷开始在国内寻找供应商。另外随着我国不断深化改革开放,低端产能逐步淘汰、所有产业都向高、精、尖推进,所以高端高压电源的使用也会越来越多。因此威思曼表示,国产高压电源的市场前景整体乐观。白婷表示:“威思曼高压电源产品多年来坚持走高端路线,每年都会研发储备大概后续5年才会用到的一些高压电源产品,公司技术储备扎实到位。目前威思曼高压电源产品系列全,电压覆盖范围0.1kv-600kv、功率覆盖范围0.1w-120kw范围,完全具备一站式供应高压电源的能力,这可能是威思曼最大的优势之一。威思曼高压电源经过11年的发展,培养了一批高压电源的研发、制造专业人员,使中国高压电源完全具备自给自足的能力。”本次慕尼黑上海分析生化展,威思曼带来机箱式高压电源、模块式高压电源、微型模块式高压电源、X射线类产品和一些定制类的高压电源。机箱式高压电源具有数字化网口通讯功能、整体功率较大、电压较高等特点,主要面向一些大功率高电压用户的需求,用户分布在电子束焊接领域、军工领域和大专院校。模块式高压电源主要特点是体积比较紧凑、功率密度大、长期稳定性高、纹波低、效率高,主要应用于工业、医疗及军工航天,具体比如半导体测试领域、DNA测试领域、电泳领域、静电印刷、电容充电,导弹,激光制导等领域,航天领域如北斗导航卫星等等。微型模块高压电源主要应用尖端仪器仪表居多,比如质谱仪,各种固态探测器。这类微型高压电源模块纹波超低、稳定性非常高、温度漂移低,且3项指标集成于一个模块的,只有西安威思曼高压电源有限公司有这种产品。X射线管用高压电源是威思曼高压电源多年来的拳头产品,主要用于全球各个厂家的X射线kv,功率从几瓦到几十千瓦,广泛用于在线检测、安检、无损检测、医疗CT、DR等领域。本次威思曼展出的还有一些客户定制类产品,比如3D打印机高压电源,电子显微镜电源等。3D打印机高压电源是威思曼承接科技部支持项目后的一款机型,属于中国固态封装达到数字化工业使用的高稳定性首款自主知识产权的高压电源。电子显微镜高压电源,威思曼也是中国独家可以数字化工业化的电子显微镜高压电源供应商。附:国产仪器腾飞行动“创新100”介绍为秉承“国产科学仪器腾飞行动”宗旨,在中国仪器仪表行业协会的指导下,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研,在企业发展的关键时期“帮一把”,助力国产仪器中小厂商腾飞发展。一、“创新100”入选标准(1)企业主营业务为科学仪器 (2)企业主营产品具有自主知识产权,具备创新性 (3)企业总部设在中国 (4)企业科学仪器产品的年产值在3000万元以下 (5)企业需是中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网会员之一。二、“创新100”申报流程国产仪器腾飞行动“创新100”筛选流程包含以下环节:企业在线申报——企业创新能力审核——公益报道服务——线下资源对接——最具成长潜力企业评选。三、“创新100”报名方式扫描二维码填写申请表,完成“创新100”预报名。更多相关内容请点击进入专题《“创新100”助力国产腾飞》

  1880年,法国物理学家居里兄弟发现,把重物发在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。利用压电材料的这些特性可以实现机械振动(声波)和交流电的相互转换。打火机的点火装置,就是利用此原理进行打火。后来压电材料广泛应用于各种传感器(如图1)中,例如换能器、传感器、驱动器、声纳、手机和机器人等方面。图1压电陶瓷传感器压电效应的产生是晶胞中正负离子在外界条件作用下出现相对位移,使得正负电荷的中心不再重合,导致晶体发生宏观极化。压电电荷的流动方向取决并且遵循其陶瓷和晶体材料的晶格排列,因此压电陶瓷和压电聚合物复合材料的压电常数与其结构组成有着密切的相关性。美国弗吉尼亚理工大学的郑小雨(RayneZheng)教授及其实验室的博士团队使用3D打印的方式实现了新型压电材料的制造,并且采用这种方法制备了具有高压电特性的材料,实现电压在任意方向可被放大、缩小和反向的特征。图2高灵敏度压电材料的合成以及3D打印制造图3压电材料3D打印制造(弗吉尼亚理工大学)这种压电材料的制造方法为:首先采用功能化剂(三甲氧基甲基丙烯酸丙脂)共价接到PZT(锆钛酸铅压电陶瓷)颗粒上合成表面功能化的压电纳米粒子,表面通过硅氧烷键在表面留下自由的甲基丙烯酸酯(如图2-a);通过提高表面功能化水平,提高复合颗粒材料的压电相应水平,使之达到最大(如图2-b) 最后通过面投影3D打印方式实现纳米颗粒的粘接成型(如图2-c和图3),最终得到需求的压电材料结构,其显微镜结构(如图2-d)。基于此项技术,压电新型材料在很多领域得到应用P1多功能柔性可穿戴智能材料通过电压激活后能够设计和制造出一系列新型智能材料。该三维材料具有任意形状,任意内部结构复杂度,并且每一个节点、单元和材料本身任意部位均具有压电感应功能,无需任何附加传感器即可实现电压输出。根据该材料的特性,开发出了柔性压电材料(如图4),为将来可穿戴柔性器件开发做好基础准备。图4打印的柔性材料薄片(弗吉尼亚理工大学)P2自感应吸能材料及护甲由于这种智能材料各个部位均具有压电感应,其打印支撑的三维结构将无需任何附加传感器,并探测出任意位置的压力或者震动。现有传感技术和结构损伤检测当中,需要在各个位置上布满大量的压电传感器,并且对于复杂结构,需要通过复杂算法优化计算,最终来确定传感器阵列的布置。然而,这种自感应三维材料,则可以通过任意位置的压电结构材料,首次解决了这项难题,并且通过智能桥梁结构得到验证(图5)。图5智能桥梁检测实验P3矢量传感领域通过人工晶格设计制成的压电超材料,可以很灵巧的实现矢量探测传感功能,通过利用改型材料不同结构有不同压力静电相应的特性,设计如图(6-b)所示的结构,并对不同方向进行压力测试,可以实现三个方向的不同压电系数的压电材料制备。图6力方向感知测试国内西安交通大学陈小明教授也在应用3D打印技术研究压电材料,其将压电聚合物或陶瓷与光敏树脂混合制备成复合材料,然后将复合材料利用深圳摩方(BMF)的3D打印设备S140进行打印成型,从而制成相应的压电器件。除此之外,利用3D打印技术可以制备具有多种微结构的器件(图7),相比于传统的微纳加工工艺具有成型快,成本低,可定制化等优点。打印的微结构复合压电器件相比于平模,极大的提高了压电输。

相关推荐
  • 首页!【天美注册】!首页
  • 天九娱乐_天九注册【1号团队】
  • 首页~皇马注册-首页
  • 恩佐娱乐恩佐注册平台【联盟认证】
  • 大摩-大摩平台-注册登录中心
  • 首页、「鼎点注册」首页
  • 17首页-17注册丨主页
  • 首页。名宇娱乐平台。首页
  • 首页*顺盈注册*首页
  • 首页!UED在线娱乐主管
  • 脚注信息